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the acyclic silyl ether 17 in 72% yield:8 N M R (CDCl3) 5 0.16 
(s, 9 H), 0.87 (d, 6 H, J = 6 Hz), 1.60 (br s, 9 H), 5.10 (t, 1 H, 
J = I Hz); mass m/e 282 (M + ) . Thus, again, the fate of cy-
clization is markedly affected by steric integrities of the allylic 
acetates. 
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The success of the approach illustrated in this communi­
cation has made it possible to consider several new biomimetic 
routes to terpenes as well as a fairly general route to various 
cycloheptenone derivatives. 
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Two Stable Sulfuranes, . 
(CFa)2S(OCFj)2 and ( C F 3 O ) 2 S C F 2 S ( O C F S ) 2 C F 2 

Sir: 

Recently we have reported the synthesis of thermally stable 
chlorobis(dialkylamino)trifluoromethylsulfuranes' which are 
hydrolyzed slowly by water to form the trifluoromethyl(di-
alkylamino) sulfoxides. In our continuing studies of tri- and 
tetracoordinated sulfur(IV) compounds, it now has been 
possible to prepare bis(trifluoromethyl)bis(trifluoro-
methoxy)sulfurane (A), the first stable member of a new 
family of tetracoordinated sulfur(IV) compounds, by photol­
ysis of a mixture of bis(trifluoromethyl) sulfide and trifluo-
romethyl hypochlorite. There is considerable interest in aryl 
sulfuranes based on reports concerned with the preparation,2-6 

the geometry at sulfur,7 and the synthetic utility8 -" of these 
compounds. Dialkyldialkoxysulfuranes have been suggested 
as intermediates in the chemistry of sulfonium salts.12 Com­
pounds which are formal derivatives of sulfur tetrafluoride and 
sulfur hexafluoride are stable and their geometries and reac­
tivities have been well studied.1314 
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Bis(trifluoromethyl) sulfide15 and trifluoromethyl hypo­
chlorite16 are condensed into a 100-mL quartz vessel and 
photolyzed for 20 h with a Hanovia utility ultraviolet quartz 
lamp. Bis(trifluoromethyl)bis(trifluoromethoxy)sulfurane (A) 
is retained in a trap at —78 0 C by using trap-to-trap separation 
techniques. This sulfurane is a pale yellow liquid with an ex­
trapolated boiling point of 72 0 C from the equation log P-rorr 
= 7.32 + 1532/r (valid between 0 and 52 0C). The molar heat 
of vaporization is 7.0 kcal and the Trouton constant is 20.3 eu. 
It is stable in Pyrex glass at 25 0 C for periods of a few days. 
However, in the presence of water, hydrolysis occurs to form 
bis(trifluoromethyl) sulfoxide15 (86%) and carbonyl fluoride 
(83%). When heated at 70 0 C for 1 h in a stainless steel Hoke 
vessel, bis(trifluoromethyl) sulfide and bis(trifluoromethyl) 
peroxide17 are generated quantitatively (eq 1). 
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CF3 

O H Q CF3S(O)CF3 + 2CF2O + 2HF 
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Spectroscopic data further support the existence of this new 
sulfurane (A). The 19F NMR spectrum shows resonances at 
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<t> 56.2 and 73.6 in the ratio 1:1. The former is assigned to the 
trifluoromethyl group and is a septet (J = 7.4 Hz) split by the 
OCF3 groups. Also, the infrared spectrum has absorption 
bands at 1320 (m), 1263 (vs), 1220 (s), 1198(m), 1104(vs), 
841 (m), 755 (w), 581 cm - 1 (w). When the mass spectral data 
are measured at 100 0 C and 17 eV, the molecular ion is absent; 
however, other fragment peaks, such as m/e 255 (C3OSF9, M 
- OCF3), 170 (C2SF6 , C2O2F6), 138 (C2F6), 117 (COSF3), 
101 (CSF3), 85 (COF3), and 69 (CF3) appeared appropriately. 
Anal. Calcd for C4O2SFi2: C, 14.13. Found: C, 14.06. 

The cyclic sulfide, tetrafluoro-l,3-dithietane, forms the 
sulfurane B with CF3OCl. This sulfurane (B) is also a stable 
liquid with a boiling point of 131 °C from the equation log 
/>Torr = 7.67 + 1935/7 (AZZ1, = 8.9 kcal; AS1, = 21.9 eu). 
Heating at 100 0 C for 2 h in a stainless steel Hoke vessel, sul­
furane B decomposes to the tetrafluoro-l,2-dithietane and 
bis(trifluoromethyl) peroxide quantitatively (eq 2). Further 

CF3O OCF3 

UCF^I 
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CF3O OCF3 
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* • 
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.CF2 

S ^ ^ S + 2CF3OOCF3 (2) 
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evidence supporting the structure of the new sulfurane B is the 
spectral data. The 19F NMR resonances appear at <t> 72.1 and 
96.2. The latter resonance is assigned to the CF2 groups which 
are a multiplet split by the OCF3 groups (J = 12.1 Hz). The 
infrared spectrum has absorption bands at 1290 (m), 1233 
(ms), 1184 (s), 1120 (s), 1071 (s), 1025 (m), 992 (ms), 755 
(m), 733 (m), 528 cm"1 (w). In the mass spectrum, the frag­
ment peaks, m/e 419 (C5O3S2Fi3 , M - OCF3), 334 
(C4O2S2Fi0), 249 (C3OS2F7), 170 (C2O2F6), 164 (C2S2F4), 
85 (COF3), 82 (CSF2), and 69 (CF3) appeared appropriately. 
Anal: Calcd for C6O4S2F16: C, 14.29. Found: C, 14.31. 

Reactions of A. Bis(trifluoromethyl)bis(trifluoro-
methoxy)sulfurane (A) is a useful precursor to bis(trifluo-
romethyl)-A'-alkylsulfimides when it is reacted with primary 
amines. In a typical reaction, 1 mmol of A and 3 mmol of 
ammonia are condensed into a 50-mL Pyrex vessel with a 
Teflon stopcock. The mixture is allowed to warm slowly to —78 
0 C and to remain for 30 min. After this period, it is vacuum 
distilled at low temperature to give the bis(trifluoromethyl) 
sulfimide (eq 3).18 Primary amines can be reacted in the same 

manner. 10 

CF3. 

CF3 

OCF3 

.S: 

OCF3 

+ 3RNH, 

(CFs)2S=NR + 2CF2O + 2RNH2-HF (3) 

R = H(42%), CH3<52%), C2H6(56%) 

Sulfurane A apparently undergoes a ligand exchange re­
action with lithium hexafluoroisopropylidenimine to form a 
new type of sulfurane (C); however, the latter is unstable de-
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composing to bis(trifluoromethyl) sulfide (85%) and hexa-
fluoroacetone azine19 (93%) (eq 4). 

Further evidence of the versatility of sulfurane A is in its 
reactions which result in trifluoromethylanisole derivatives (eq 
5). The formation of trifluoromethylanisole20-22 by sulfurane 
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A in ether at 25 0 C is complete within 30 min. This product 
could result from an intramolecular decomposition of sulfurane 
D, and, in particular, the formation of p-trifluoromethoxyto-
luene supports the contribution of the electrocyclic7 mechanism 
6. 

CF3S(O)CF3 + Jg^OCF3 (6) 

Tertiary alcohols are dehydrated by sulfurane A to give 
olefins4 (eq 7). 

OCF 
I 3 ( C ^ C O H ^ (CHs)2C=CH2 + CFsS(O)CF3 

CF3' 
83% + CF2O + SiF4 (7) 

<CF3)20(CĤ oir*" (CF3)2C=CH2 + CF3S(O)CF3 

67% + CF2O + SiF4 
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11-Methyl-l l-tricyclo[4.4.1.0 ,6]undecyl Cation. 
First Long-Lived, Distinct Cyclopropyl 
Cation Showing Significant 27r-Homoaromatic Nature1 

Sir: 

The direct observation of the cyclopropyl cation 1 thus far 
has evaded all attempts owing to its facile ring opening to the 
energetically more favorable allyl cation 2.2 The former has 
been shown to be some 39 kcal/mol higher in energy than the 
latter, and the rearrangement takes place with little or no en­
ergy barrier.3 

H +.?—H 

2 

Evidence has been presented for the intermediacy of cy­
clopropyl cations under solvolytic conditions in geometrically 
constrained bicyclic and tricyclic systems where the cyclo­
propyl ring is "locked in" so that the ring-opening process is 
forbidden or at least is minimized.4-5 in the solvolytic reactions, 
indeed, the unrearranged cyclopropyl products were obtained 
with retention of configuration. According to an interpretation 

first advanced by Schleyer and Schollkopf, the intermediate 
carbocationic species in such reactions are partially opened 
("half-opened" cyclopropyl cations).311'4 We wish to report now 
the direct observation under stable ion conditions of the first 
stable, distinct cyclopropyl cation showing significant 2TT-
homoaromatic nature. 

The highly strained 11 -methyl-11 -bromotricyclo-
[4.4.1.0'-6]undecane 35-6 in surfuryl chloride fluoride 
(SO2ClF) solution at - 6 0 0 C displays in the 1H NMR spec­
trum (60 MHz, Figure la) a methyl singlet at 5 1.83 and 
methylene multiplets at 1.2-1.8. When this solution is slowly 
added into a well-stirred solution of antimony pentafluoride 
(SbF5) in SO2ClF at - 1 2 0 0 C, a light yellow solution is ob­
tained which is stable up to - 6 0 0C. 7 The 60-MHz 1 H N M R 
spectrum (Figure lb) of the solution at —90 0 C displays three 
proton resonances centered at 8 3.18 (m, 4 H), 3.03 (s, 3 H), 
and 1.90 (m, 4 H). The substantial deshielding of both the 
methyl and methylene protons points to the formation of a 
discrete carbocation 4. 

The 1H NMR spectrum of 4 seems to indicate the sym­
metrical nature of the ion. The proton-decoupled 13C NMR 
spectrum (Figure Ic) of the ion obtained at —90 0 C, however, 
shows seven carbon resonances. According to the off-resonance 
13C NMR spectrum, the two most deshielded resonances at 
513c 210.0 and 168.5 (from external TMS) are singlets, which 

«»ifr> »,wfĉ *»* ^ V ' J tV^JVmW***) 'fc»'»»«»* » ' , V > U . » » V I I « / > ^ « S F ' IL \J*ic) 
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Figure 1. (a) 60-MHz 1H NMR spectrum of 3 in SO2ClF at -60 0C; (b) 60-MHz 1H NMR spectrum of 4 in SbF5-SO2ClF at -90 0C; (c) proton 
decoupled 13C NMR spectrum of 4; (d) proton decoupled '3C NMR spectrum of 3. 
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